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Synopsis 

The knowledge of some mechanical properties of twisted filament is necessary to predict properties 
of continuous-filament yarns. Retraction, strength, strain, and elastic properties of filaments are 
the chief characteristics. Assuming that the filament can be considered as a yarn made of fibers 
bounded together and then twisted, formulas for prediction of those properties were elaborated and 
then compared with the experimentally received values. Satisfactory agreement of computed results 
with experimental values is obtained if the changes in volume of filament a t  strain is taken into ac- 
count. 

INTRODUCTION 

The progress in textile technology and the extension of the applications of 
textile raw materials and products necessitate comprehensive analysis of the 
phenomena associated with the production, processing, and use of textile fibers, 
yarns, and products. Ever since the chemical fibers were introduced on the 
market, the proportion of filament yarns in the total quantum of textile raw 
materials has been steadily growing. The filament yarns often must be twisted, 
and in this operation the elementary fibers are both twisted and bent. The 
present article is an attempt to throw some light, upon the retraction and changes 
in the tensile properties of twisted monofilaments and changes in the elastic 
properties of bifilaments obtained by doubling and twisting two twistless 
monofilaments. 

RETRACTION OF FILAMENTS IN TWISTING 

A filament can be viewed as a body composed of fibrils that are held together 
by forces of cohesion. Initially, the axes of the fibrils are parallel with the fila- 
ment axis. In this state, filament is similar to a yarn produced by adhesive 
bonding of the fibers, as evidenced by photographs of axially shredded filaments, 
Figure l(a). In twisting, the fibers adopt a helical form. Evidence of this is again 
found in photographs of axially shredded filaments which had been previously 
twisted and stretched till rupture, Figure l(b).  Thus, it  follows that in every 
layer of the fibrils of a twisted filament there must be present longitudinal and 
shear strains the values of which are proportional to the distances of the fibrils 
from the filament axis. 

Let us imagine that from a twisted filament of circular cross section a segment 
has been cut of a length equal to the pitch of the spiral formed by the fibrils on 
the filament surface, assuming that originally the fibrils were positioned parallel 
with the filament axis. Let the angle formed between a tangent to this spiral 
and the direction of the filament axis (Fig. 2) be designated as r ( j ~ .  The obvious 
relation: 
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(h)  
Fig. 1. (a) Axially shredded twistless filament (the fibrils are parallel to filament axis). (b) Twisted 

filament, axially shredded upon stretching to rupture (the shredding is spiral; fibrils have a spiral 
configuration). 
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Fig. 2. Schematic representation of a twisted filament. 

holds true then, where R is the external radius of filament cross section, h is the 
pitch of the spiral on filament surface, and T is the number of turns per unit 
length of filament. 

Because of the cohesion of the fibrils, the spiral pitch of the axes of the fibrils 
which are inside the filament body is equal to that of the axes of the surface fibrils. 
Therefore, for the fibrils that are a distance L away from the filament axis, 

27rr 
tg = - = 2nrT 

h 

If the expressions tg PR = g (which will be referred to as “twist parameter”) and 
rlR = x are introduced, then 

tg P = xg (3) 

The length 1 of a spiral of radius r will be of course 

and is, therefore, a function of the distance x from the filament axis and of the 
filament twist parameter g. 

In twisting, the diversification of the lengths of the filament-composing ele- 
ments results in longitudinal strain of the elements and, therefore, in axial 
stresses. Were the filament length invariable, the load applied to it in twisting 
would have to be continuously increased, as was observed by Dent and Herle.‘ 
If, however, only a minimum load is applied, just enough to keep the filament 
straight throughout the twisting operation, then a shortening of the filament 
length is observed. This shortening is a result of the diverse stresses that are 
generated in the external (where the filament elements are stretched) and in- 
ternal (where the filament elements are compressed) layers of the filament. 

Let s denote the factor of filament retraction after twisting: 
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where Lo is the initial length of filament and L1 is the filament length after 
twisting. A segment of twisted filament of a length equal to one pitch h will have 
resulted from a segment of twistless filament of length 10 = h/s .  

The length of a fibril a t  a distance r from the twisted filament axis is 

(6) 
h l = -  

cos p 
The longitudinal strain of the fibril is 

With small axial strains it is possible to adopt a directly proportional relation 
between stress and strain, the same for stretching and compression. Let E be 
factor of proportionality - Young’s modulus. Then, the relation between the 
axial stress and strain will be 

CJ = Et = E ( S  JI + x2g2 - 1) (8) 

The stress is oriented along the fibril axis spiral, and it is calculated as stress per 
unit area of the fibril in a section normal to the fibril axis. 

If A denotes the fibril cross section area in a plane normal to a tangent to the 
fibril axis, the elementary force in the fibril, generated by stress cr, is 

F‘= aA‘  (9) 

Its projection on the filament axis is 

Fb = crA’ cos p (10) 

Because the fibril axis is a t  angle 0 to the filament axis, the fibril cross-sectional 
area, in a plane normal to the filament axis, is 

, A’ 
A , = -  

cos p 
Therefore, the component axial stress in the fibril along the filament axis is 

Such stresses are present in the fibrils which are a distance from r = xR from the 
filament axis in a layer the thickness of which is dr  = R d x .  The total force 
generated in the elements is 

1 dP = a, . P x r  d r  = E(s J1 + x2g2 - 1) 
1 + x2g2 

The force resultant from the stresses that are present in the whole cross section 
of the yarn is 

1 
P = 2xR2E ( S  41 + x2g2 - 1) x d x  

1 + x2g2 
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and is equal to the filament weighting load (straightening force). From eq. (15) 
the required weighting load a t  predetermined retraction factor s can be calcu- 
lated: 

[2s (Jm - 1) - In (1 + g2)]  
E p = -  

47rT2 

Especially if the stress-strain relationship is linear and the filament length in 
twisting is maintained constant (s = I), the force necessary to preserve the 
condition is 

This permits anticipation of the increase of force P as a function of twist pa- 
rameter g. On the other hand, if a constant weighting load were used, the re- 
traction factor would be 

( a f / E )  g2 + In (1 + g2)  - cg2 + In (1 + g2)  - 
2 ( J W  - 1) 2(- - 1) 

s =  

where of = P/7rR2 is filament tension and 6 is filament strain a t  load P (or a t  
tension at). 

STRENGTH OF TWISTED FILAMENTS 
Obviously, if a filament is stretched, stresses are generated in it. In a twistless 

filament, the stress-strain interrelationship is generally nonlinear. 
In adopting the earlier presented model of internal fibrilar structure of fila- 

ments, let us investigate what changes occur in an elementary cylinder having 
a diameter 2r and initial length h ,  in a twisted filament after the filament has 
been stretched to a length hl. 

As a result of stretching, the filament undergoes constriction (i.e., reduction 
of diameter). Itsinitial diameter 2R changes into diameter 2R1 (Fig. 3). I t  is 

Fig. 3. Schematic representation of a twisted and stretched filament 
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Fig. 4. Stress-strain relation for a filament. 

reasonable to infer that the diameters of all the isolated layers will change sim- 
ilarly. Therefore, 

2R1 2rl 
2 R  2r 

- u  - 

where u is the filament constriction factor. 

h l  
1 1  =- 

cos P I  

The spiral length in the stretched filament is 

where PI is the angle between the fibril axis and the filament axis following 
stretching (prior to stretching, this angle was equal to 0). 

The value of the twist parameter is now 

If 

- l + a  _ -  h l  
h 

where a is the strain of filament, then 

where k is the coefficient of change of the geometry of filament fibrils. For a 
fibril the distance of which from the filament axis is r = xR, the twist parameter 
is 

(23 )  g 
k 

The strains which are produced in the filament result in the following longi- 

tg p1 = x - = xg1 

tudinal stress in the fibril: 

= s J ( I  + a)2 + u2x2g2 - 1 (24 )  
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The strains are associated with stresses via relation ( T ( E ) ,  which can be determined 
for twistless filament. 

The total force in the layer originally a distance 1 from the filament axis and 
calculated along the fibril axis is 

d F  = ( ~ ( 6 )  27rr d r  cos /3 (25) 

since the tension relates to the initial dimension of the body. A projection of 
the force on the stretched filament axis is 

d P  = d F  cos PI = ( T ( E )  27rr d r  cos 0 cos (26 )  

The total force to which the filament is subjected at  strain a is 

R 
P = a(€) 2 7 ~  r d r  cos 13 cos = 7rR2 ( ~ ( t )  2x d x  cos p cos p1 (27 )  

and the tension, as calculated in relation to the initial cross-sectional areas of 
the filament, is 

1 
a(t) 2 x dx cos p cos p1 

P 
(Tf =-= .rrR2 I = o  

In order to find af, it is necessary to know the function ( ~ ( t ) .  This function 
has a form that generally cannot be described by means of simple algebraic 
relations. However, for the particular values of the filament strain a ,  it is possible 
to determine the boundary values of fibril strain inside the filament [ 4 0 ) ]  and 
on the filament surface [ t ( l ) ]  from the equations 

E(0) = s ( 1  + a )  - 1 

4 1 )  = s d'(1 + a)2 + u2g2 - 1 (29 )  

and in these intervals to approximate the tension by means of the parabolic 
function 

(T = G + Ht + J t 2  (30) 

If the above expression is substituted in eq. (30) in place of E and in the right- 
hand side of eq. (24) and the thus expressed tension (T is introduced into eq (as), 
then, upon integration, the filament tension af is obtained as a function of twist 
parameter g and of filament strain a (through parameter k )  in the form: 

k 
)(G - H + J )  + - [In ( 1  + g 2 ) ] u ( H  - 2 5 )  

J m + m  
(T,s = 2 I n  

g 2  l + k  g2 

d W + d k J h ' ) + g 2  uJh')J (31) -1 + ( k 2  - 1 )  In 
l + k  
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STRAIN OF TWISTED FILAMENTS 

Consistently with what has been already said, a t  filament strain u the strain 

(32)  
The highest values of the strains are observed on the filament surface (x = 1). 

(33)  
If it is assumed that the critical value of fibril strain 6, is independent of the 

of filament fibrils, a t  a distance r = x R  from the filament axis, is 

€ = s J( l  + a)2 + u V g 2  - 1 

Therefore 

€max = s J(1 + a)2 + u 2 g 2  - 1 

filament twist, then 

Hence, the twisted filament strain is 

RESIDUAL STRAINS O r  A TWISTED BIFILAMENT 

It is best to characterize the elasticity of a twisted bifilament by its residual 
strains U b p  after first straining the filament by U t b .  

In investigating the relationships between a p b  and a t b ,  let us study a bifilament 
twisted up of two twistless monofilaments (Fig. 5) .  

Let T b  denote the number of turns of the bifilament. Thus, the monofilament 
axis spiral pitch is h b  = 1 / T b .  A t  the same time, the monofilament axis spiral 
radius is equal to the monofilament cross-sectional radius R. 

A monofilament twisted into a bifilament will have a twist equal to the 
monofilament axis torsion divided by 2n. If the twist is designated by the symbol 
Tg, the result will be 

Fig. 5. Schematic representation of a twisted bifilament. 
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where f i b  is the angle formed between a tangent to the filament axis and the di- 
rection of the filament axis. If the bifilament twist parameter is written 

(37) g b  = 2aRTb = tg f i b  
and the twist parameter of monofilament twisted into bifilament is 

g2 = 2aRTp (38) 
then 

Let us investigate now a bifilament of initial length l o b  (Fig. 6) extended to 
length lib. The ratio of the two lengths gives 

where ab is the bifilament strain. But 

Fig. 6. Schematic representation of a twisted and stretched bifilament. 

.88 

4 .2 .3 .4 .5 .6 .7 .s .9 y 
Fig. 7. Experimental coefficient of retraction as a function of twist parameter: (0 )  d = 0.80 mm; 

(X)  d = 0.61 mm; (0) d = 0.50 mm; (H) d = 0.21 mm. 
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10b = 10, cos PbO (41) 

where lo, is the monofilament length in unstrained bifilament and PbO is the 
angle between a tangent to the monofilament axis and the direction of the bi- 
filament axis prior to strain. Also, 

115 = 11, P b l  = lorn (1  + Em) cos Pbl (42) 

where E ,  is the monofilament strain and P b l  is the angle between'a tangent to 
monofilament axis and bifilament axis, in a strained bifilament. 

The geometric relations give 

and 

if it is assumed that the square coefficient of monofilament constriction u2 is 
approximately inversely proportional to the monofilament length after strain 

If the values are substituted in eq. (40), the following equation is obtained: 
( 1  + em) .  

Upon simple transformation, an equation is obtained which interrelates the 
monofilament and bifilament strains in the form 

g'b (1 + E m )  - - = 0 ( 1  + a b l 2  (1 + €,)3 - 
1 + g ;  1 +g'b 

from which the monofilament strain ern can be calculated for adopted values of 
the bifilament twist parameter g b  and strain a b .  

Following a previous determination of the relationship between the monofil- 
ament residual strain and total strain E , ~ ( E , ~ ) ,  it is possible to establish the bi- 
filament residual strain a b p  from the equation 
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EXPERIMENTAL 

Investigating the Filament Retraction Factor 

For the purposes of determing the filament retraction factor, a special testing 
station had been arranged. The station consisted of a twist tester head, of which 
the spindle was located so that its axis was positioned vertically, and a movable 
second clamp which was located under the spindle. The distance between the 
spindle clamp and the movable clamp was 600 mm. 

In the clamps, twistless filament lengths were fixed and preloaded to 5 mN- 
m/mg. Then, the filament was twisted and the shortening of the filament length 
A as a fuqction of the number of the spindle revolutions was recorded. The re- 
traction factor was calculated from the formula 

l o - x  
10 

and the twist parameter from the formula 

s = -  

1 
g = r d n -  

lo  - x 

(48) 

(49) 

where 10 = initial length of specimen (distance between the clamps), d = initial 
diameter of specimen, and n = number of spindle revolutions. 

Analyzed were polyester filaments of diameter d = 0.21 mm, 0.50 mm (dull), 
0.61 mm, and 0.80 mm (dull). In all cases, an almost complete coincidence of 
the calculated and experimental values of retraction factor for a twist parameter 
interval of 0 d g d 0.3 was observed (Fig. 6). Differences were observed with 
higher values of the twist parameter; namely, for the retraction factor, the ex- 
perimental value was lower than the calculated. The differences may be the 
result of (1) different values of Young’s modulus, in the stretching and com- 
pression zone, at strains greater than 0.02 (2%); or (2) differentiation of Young’s 
modulus between the filament external layer and center, which has been pos- 
tulated as an explanation of certain peculiarities in the relationship between shear 
modulus and filament diameter.2 The second hypothesis seems more plausible, 
since in the case of finer filaments the outer layer takes relatively more of the 
filament cross-sectional area than in a coarse filament. 

However, a full explanation of the differences would require a more compre- 
hensive study based on a much wider range of experimental material. 

Change of Filament Diameter in Stretching 
In the heretofore discussion the change of filament diameter in stretching was 

included. Frequently, it is assumed a priori that, in stretching, the filament 
volume remains constant and therefore 

where do, d l  is the filament diameter, respectively, in the initial state and after 
stretching; and lo,  11 is the filament length, respectively, in the initial state and 
after stretching. From this equation the coefficient of constriction is calcu- 
lated: 
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In order to verify the above postulate, an investigation of the filament diameter 
change in stretching was carried out. The testing equipment consisted of a bi- 
ological microscope provided with a micrometric eyepiece and stretching device 
slidably mounted on the microscope stage. Filament diameter was measured 
in places marked on the test specimen in its initial state and after the specimen 
had been stretched by predetermined values. The reading accuracy was 0.001 
mm. The results are presented in Figure 8. 

From analysis of the results it can be seen that the diameter change versus 
strain of the specimen can be described by this approximated relation: 

dl  
do 

u = - = (1 + a)-Y 

where y = 0.42-0.50 is dependent on the type of the monofilament. If y < 0.50, 
the volume of the monofilament, as can be easily seen, increases. 

Measurement of Filament Strength and Elongation 

Serious difficulties were encountered when measuring the strength and 
elongation of filaments, particularly of twisted filaments. All tests were per- 
formed on the Instron Universal tensile tester, at  first using the flat pneumatic 
clamps. With these clamps, however, a considerable number of the twisted 
filaments were broken near one of the clamps. This meant that there was a jump 
of stress near the clamp, which weakened the specimen. On the other hand, some 
twistless filaments would partly creep out of the clamps, which distorted the 
picture of the load-elongation relation. 

It was, therefore, decided to carry out the tests using the clamps for testing 
cords. These, however, did not provide a precise picture of the relationship 
between the stretching load and elongation, nor was it possible to obtain a precise 
value of the elongation at  break. In order to obviate the difficulty, it was decided 
to use twin specimens: one with interclamp distance 1' (50 mm) and the other 
with interclamp distance 1" (200 mm). This enabled one to obtain a net specimen 
length 1" - 1' = 150 mm, and prP%inary tests showed that the stretching time 
till break was identical for bot t  ,pecimens. 

Upon averaging the load-elongation curves for each series of specimens, it was 
possible, by subtracting the shorter specimen elongation A' from the longer 
specimen elongation A" a t  the same load, to obtain the elongation a t  this load 
for the 150-mm-long specimen. The results obtained for four filaments are 
presented in Tables I and 11. 

Fig. 8. Changes of filament diameter vs. strain. 
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TABLE I 
Breaking Load of Samples a t  the Initial Distance between Hooks of 50 mm ( F )  and 200 mm (F)a 

Twist Breaking Load 
param. 0.21 mmb 0.50 mm 0.61 mm 0.80 mm 

g F"1 FIN1 F"1 F"1 F"1 F"1 F"1 FIN1 

0 21.5 21.6 
(0.4) (0.4) 

0.10 21.2 20.5 
(0.3) (0.3) 

0.20 21.4 20.5 
(0.3) (0.2) 

0.31 21.0 20.2 
(0.5) (0.4) 

0.41 20.7 19.8 
(0.7) (0.7) 

108.9 
(1.2) 

110.5 
(1.2) 

107.7 
(1.2) 

107.1 
(1.5) 

105.8 
(2.2) 

109.1 
(1.3) 

109.6 
(1.7) 

105.2 
(3.8) 

104.4 
(3.4) 

102.2 
(4.0) 

142.9 141.7 
(1.3) (1.2) 

139.6 138.7 
(2.2) (2.5) 

140.5 140.2 
(1.2) (1.9) 

140.2 138.9 
(1.9) (1.7) 

142.9 139.8 
(3.2) (1.8) 

249.4 
(6.0) 

251.0 
(8.2) 

246.8 
(7.5) 

246.8 
(8.6) 

244.5 
(6.6) 

249.2 
(8.3) 

248.9 
(6.8) 

244.7 
(6.5) 

242.6 
(5.4) 

240.9 
(6.4) 

a Figures in parentheses are standard deviations of breaking load. 
Filament diameter. 

Analysis of the results shows that the breaking load is only slightly reduced 
with increase in twist parameter. The elongation of samples 50 and 200 mm long 
increases with increasing twist. However, the differences between these two 
values for every kind of filament and twist parameter do not coincide with 
elongations of broken samples. 

Of the adopted method, which is based on difference of elongations, it can be 
said that while it is adequate in describing the load-elongation relationships, 
it fails to give fully reliable results where critical values are involved. The reasons 
are as follows. 

Obviously, the longer specimens have a higher internal fineness irregularity, 
and this means lower mean breaking load and lower mean elongation at  break.3 
The load-elongation curve is almost identical for specimens of different lengths. 
If, however, creeping of the specimen occurs in the critical zone, then even with 
increased specimen length (and, therefore, increased fineness irregularity) the 

TABLE I1 
Elongation of Samples a t  Initial Distance between Hooks of 50 mm (A') and 200 mm (A"), and 

Calculated Elongation of Samples a t  150 mm (A" - x'Ia 

Twist Elongation 
param. 0.21 mmb 0.50 mm 0.61 mm 0.80 mm) 

A' A" A" - x' x' A" A" - x' x' A" All - A' x' All All - A' 

0 24.9 48.9 24.0 54.4 109.1 54.7 51.4 100.6 49.2 36.2 68.4 32.2 
(3.1) (2.9) (0.2) (0.2) (3.0). (3.8) (3.8) (4.7) 

0.10 27.3 51.8 24.5 55.1 106.4 51.3 51.7 99.6 47.9 37.1 69.6 32.5 
(4.0) (0.2) (0.2) (3.4) (3.8) (4.9) (4.1) 

0.20 28.5 52.5 24.0 55.7 102.5 46.8 51.0 97.6 46.6 38.5 72.6 34.1 
(3.9) (4.3) (10.0) (3.5) (4.8) (4.5) (5.3) 

0.31 28.5 52.6 24.1 56.7 103.5 46.8 49.9 96.7 46.8 38.9 73.2 34.3 

0.41 29.8 52.2 22.4 55.7 100.3 44.6 50.8 100.0 49.2 39.6 76.8 37.2 
(3.9) (3.9) (9.9) (3.4) (4.4) (4.2) (5.1) 

(3.9) (0.2) (0.5) (3.7) (4.8) (4.5) (5.3) 

a Figures in parentheses are standard deviations of elongation. 
Filament diameter. 
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creeping will not show in the diagram, since it affects only a small part of the 
specimen. In subtracting A‘ from A”, the obtained elongation is less then the 
actual elongation. This was particularly strongly manifested in the case of the 
filament of d = 0.21. 

It must be mentioned that in certain cases visible creeping was followed by 
decrease in load a t  increasing elongation. 

To show better the changes in the strength of filaments with increasing twist, 
the relationship of the strength of filament with the g twist parameter, uf(g), 
to the strength of untwisted parameter, uf (O), was calculated as follows: 

For experimental results: 

q(g)exp 
@ f ( O L X ,  

c =  

For calculated values of uf(g) from eq. (31) and uf(0) from eq. (30): 

fJ (g) C’ = - (53) 

(54) 

For calculated values of uf(g) and af(0) from the same equations assuming 
creep of material at  breaking elongation, i.e., H = 0, J = 0: 

The results are presented in the Figures 9(a) through 9(d). 
I t  can be seen that there is better coincidence of values of C” with values of 

C. However, the comparison of the stresses calculated for strains smaller than 
critical shows satisfactory agreement of experimental with values computed from 
eq. (31). 

Elasticity of Bifilaments 

The experimental material consisted of two polyamide monofilaments of di- 
ameter d = 0.15 and 0.25 mm, respectively. The mechanical properties of both 
the monofilaments and the bifilaments were tested on the Instron tensile 
tester. 

The specimens of twistless and twisted monofilaments and bifilaments were 
fixed in flat clamps; since the specimens ruptured near the clamps, the ranges 
of load and total elongation were limited. But in tests of elasticity, this did not 
have any significant effect on the results. 

The specimens, both monofilaments and bifilaments, were tested with the 
initial interclamp distance being 200 mm. Preloading was used to 5 mN.m/mg. 
Thus clamped, each specimen was successively elongated by 4,8,12,16, and 20 
mm in relation to its initial length. Both at  each highest point and each time 
the lower clamp returned to its starting position, the lower beam was stopped 
a t  60 sec. The tests were performed at  t = 20-24OC and a t  a humidity of 60- 
65%. 

The monofilaments were tested after they had been twisted to the following 
twist parameter values: 
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Fig. 9. Filament strength, experimental and calculated from eqs. (30) and (311, as function of twist 
parameter: (a) d = 0.21 mm; (b) d = 0.50 mm; (c)  d = 0.61 mm; (d) d = 0.80 mm; (X) C’; (0) C”; 
(A) experimental. 

Mono filament 
diameter d = 0.15 mm d = 0.25 mm 

gf 0.092 0.108 

g’l’ 0.269 0.299 
0.392 0.392 

g” ... 0.196 0.199 

g i v  

The twisting was effected on a special twist tester. The values of residual 
strain up vs. total strain at are presented in Figures 10(a) and lO(b). Then, using 
the same twist tester, the bifilaments were twisted so that the twist parameter 
was g,  = 0.2, g, = 0.4. The values of residual strain up vs. total strain at are 
presented in Figures l l ( a )  and l l(b).  

Using the twist parameter values for the mono- and bifilaments and values 
of residual strain versus total strain for the monofilaments, the bifilament re- 
sidual strains at  predetermined total strains were calculated from eq. (47). The 
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(a) (b) 
Fig. 10. Residual strain vs. total strain in monofilaments: (a) d = 0.15 mm; (b) d = 0.25 mm. 

calculated and experimental results are listed in Table 111. As can be seen in 
the table there is a high agreement between the calculated and the experimental 
results. 

CONCLUSIONS 
The results obtained in testing the mechanical properties of the discussed 

filaments and bifilaments and compared with results of mathematical analysis 
permit to formulate the following conclusions: 

(1) It is possible to predetermine analytically the filament contraction in 
twisting with a twist parameter interval 0 d g < 0.4. The differences that are 
observed with higher levels of twist require further studies. 

(a) (b) 

Fig. 11. Residual strain vs. total strain in bifilaments: (a) d = 0.15 mm; (b) d = 0.25 mm. 

TABLE 111 
Calculated from Equation (47) and Experimental Bifilament Residual Strain as a Function of 

Total Straina 

Bifilament 
total 

strain 
abt  

2 
4 
6 
8 

10 

Bifilament residual strain Ubp, '70 

g, = 0.196 g, = 0.392 g, = 0.199 g, = 0.398 
Cal'd Exper. Cal'd Exper. Cal'd Exper. Cal'd Exper. 

0.15 0.19 0.17 0.14 0.16 0.17 0.17 0.18 
0.26 0.25 0.23 0.20 0.20 0.18 0.23 0.21 
0.31 0.32 0.29 0.27 0.24 0.26 0.29 0.24 
0.46 0.42 0.52 0.43 0.36 0.35 0.46 0.37 
0.98 0.53 1.09 0.97 0.67 0.44 0.98 0.86 

d = 0.15 mma d = 0.25 mm 

a Filament diameter 
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(2) Analysis of the changes in the diameter of polyester filaments, which are 
observed in tensile testing, suggests that the reasons of the varied behavior of 
the filaments are to be sought in the initial processing. 

(3) The strength of twisted filaments decreases with increasing twist, and 
comparison of the experimental and the calculated results implies that a decisive 
part is played here by material creeping in the final stage of stretching. 

(4) In twisted filaments, the elongation at break increases with higher 
twist. 

(5) In bifilaments, the residual strain versus total strain can be predicted on 
the basis of the monofilament properties and bifilament twist. 
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